首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Performance Assessment of Feature Detector-Descriptor Combination
  • 本地全文:下载
  • 作者:A. M. M. Madbouly ; M.Wafy ; Mostafa-Sami M. Mostafa
  • 期刊名称:International Journal of Computer Science Issues
  • 印刷版ISSN:1694-0784
  • 电子版ISSN:1694-0814
  • 出版年度:2015
  • 卷号:12
  • 期号:5
  • 出版社:IJCSI Press
  • 摘要:Features detection and description among multiple images are widely used in many applications, e.g., feature matching, object categorization, 3D construction, image retrieval and object recognition. This paper evaluates combination performance of different feature detectors and descriptors. It will compare performance of detectors and descriptors combination on images under rotate, scale constraints and distortion such as illumination on different scene (bedroom, industrial and CALsuburb). An experimental result shows MinEigen detector has best result in number of detected key-points when handle rotate, scale and illumination and not affected with scene. SURF without external detector is the best when handle rotate and scale constraint in different levels and scene. FAST/SURF and Harris/FREAK are best combined against illumination distortion in different levels. This review introduces a brief introduction for providing a new research in feature detection field to find appropriate method according to their condition.
  • 关键词:local feature; detectors; descriptors Component; FREAK; SURF; BRISK; MSER; MinEigen.
国家哲学社会科学文献中心版权所有