首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Novel robust stability criteria of neutral-type bidirectional associative memory neural networks
  • 本地全文:下载
  • 作者:Shu-Lian Zhang ; Yu-Li Zhang
  • 期刊名称:International Journal of Computer Science Issues
  • 印刷版ISSN:1694-0784
  • 电子版ISSN:1694-0814
  • 出版年度:2014
  • 卷号:11
  • 期号:1
  • 出版社:IJCSI Press
  • 摘要:The existence, uniqueness and global robust exponential stability is analyzed for a class of uncertain neutral-type bidirectional associative memory (BAM) neural networks with time-varying delays. Without assuming the boundedness of the activation functions, by constructing a novel class of augmented Lyapunov-Krasovskii functional, new relaxed delay-dependent stability criteria of the unique equilibrium point are presented in terms of linear matrix inequalities (LMIs). Following the idea of convex combination and free-weighting matrices method, less conser-vative results are obtained. Two examples are given to illustrate the effectiveness of our proposed conditions.
  • 关键词:Global robust exponential stability; globally exponential stability; linear matrix inequality(LMI); neutral;type; bidirectional associative memory (BAM) neural network
国家哲学社会科学文献中心版权所有