Cigarette smoke contains over 4800 compounds, including at least 200 toxicants or endocrine disruptors. Currently, effects of cigarette smoke on thyroid hormone (TH) levels remains to be clarified. Here, we demonstrate that cigarette smoke extract (CSE) possesses thyroid hormone properties and acts synergistically as a partial agonist for thyroid hormone receptors (TRs) in the presence of TH. In transient gene expression experiments, CSE stimulated transcriptional activity with TH in a dose-dependent manner. Stimulatory effects were observed with physiological TH concentrations, although CSE did not activate TRs without TH. CSE (5%) dissolved in phosphate-buffered saline (PBS) supplemented with 1 nM TH was approximately comparable to 3.2±0.1 and 2.3±0.2 nM of TRα1 and TRβ1, respectively. To illustrate probable mechanisms of the CSE agonistic activity, effects on TR mediated transcriptional functions with cofactors were investigated. With a mammalian two-hybrid assay, CSE recruited the nuclear coactivators glucocorticoid receptor interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC1) to the TR. Unsaturated carbonyl compounds, acrolein, crotonaldehyde, and methyl vinyl ketone, representative constituents of CSE, retained such agonistic properties and possibly contributed to stimulatory effects. The results suggest that CSE recruits a transcriptional activator and may reinforce TH binding to the TR additively, resulting in gene expression. CSE partially agonizes TH action and may disturb the function of various nuclear hormone receptor types and their cofactors to disrupt the physiological processes.