首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Artificial neural network analysis based on genetic algorithm to predict the performance characteristics of a cross flow cooling tower
  • 本地全文:下载
  • 作者:Jiasheng Wu ; Lin Cao ; Guoqiang Zhang
  • 期刊名称:IOP Conference Series: Earth and Environmental Science
  • 印刷版ISSN:1755-1307
  • 电子版ISSN:1755-1315
  • 出版年度:2018
  • 卷号:121
  • 期号:5
  • 页码:052001
  • DOI:10.1088/1755-1315/121/5/052001
  • 语种:English
  • 出版社:IOP Publishing
  • 摘要:Cooling tower of air conditioning has been widely used as cooling equipment, and there will be broad application prospect if it can be reversibly used as heat source under heat pump heating operation condition. In view of the complex non-linear relationship of each parameter in the process of heat and mass transfer inside tower, In this paper, the BP neural network model based on genetic algorithm optimization (GABP neural network model) is established for the reverse use of cross flow cooling tower. The model adopts the structure of 6 inputs, 13 hidden nodes and 8 outputs. With this model, the outlet air dry bulb temperature, wet bulb temperature, water temperature, heat, sensible heat ratio and heat absorbing efficiency, Lewis number, a total of 8 the proportion of main performance parameters were predicted. Furthermore, the established network model is used to predict the water temperature and heat absorption of the tower at different inlet temperatures. The mean relative error MRE between BP predicted value and experimental value are 4.47%, 3.63%, 2.38%, 3.71%, 6.35%,3.14%, 13.95% and 6.80% respectively; the mean relative error MRE between GABP predicted value and experimental value are 2.66%, 3.04%, 2.27%, 3.02%, 6.89%, 3.17%, 11.50% and 6.57% respectively. The results show that the prediction results of GABP network model are better than that of BP network model; the simulation results are basically consistent with the actual situation. The GABP network model can well predict the heat and mass transfer performance of the cross flow cooling tower.
国家哲学社会科学文献中心版权所有