首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Parameter prediction based on Improved Process neural network and ARMA error compensation in Evaporation Process
  • 本地全文:下载
  • 作者:Xiaoshan Qian
  • 期刊名称:IOP Conference Series: Earth and Environmental Science
  • 印刷版ISSN:1755-1307
  • 电子版ISSN:1755-1315
  • 出版年度:2018
  • 卷号:108
  • 期号:2
  • 页码:022078
  • DOI:10.1088/1755-1315/108/2/022078
  • 语种:English
  • 出版社:IOP Publishing
  • 摘要:The traditional model of evaporation process parameters have continuity and cumulative characteristics of the prediction error larger issues, based on the basis of the process proposed an adaptive particle swarm neural network forecasting method parameters established on the autoregressive moving average (ARMA) error correction procedure compensated prediction model to predict the results of the neural network to improve prediction accuracy. Taking a alumina plant evaporation process to analyze production data validation, and compared with the traditional model, the new model prediction accuracy greatly improved, can be used to predict the dynamic process of evaporation of sodium aluminate solution components.
国家哲学社会科学文献中心版权所有