首页    期刊浏览 2024年07月05日 星期五
登录注册

文章基本信息

  • 标题:Endogenous superoxide is a key effector of the oxygen sensitivity of a model obligate anaerobe
  • 作者:Zheng Lu ; Ramakrishnan Sethu ; James A. Imlay
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2018
  • 卷号:115
  • 期号:14
  • 页码:E3266-E3275
  • DOI:10.1073/pnas.1800120115
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:It has been unclear whether superoxide and/or hydrogen peroxide play important roles in the phenomenon of obligate anaerobiosis. This question was explored using Bacteroides thetaiotaomicron , a major fermentative bacterium in the human gastrointestinal tract. Aeration inactivated two enzyme families—[4Fe-4S] dehydratases and nonredox mononuclear iron enzymes—whose homologs, in contrast, remain active in aerobic Escherichia coli . Inactivation-rate measurements of one such enzyme, B. thetaiotaomicron fumarase, showed that it is no more intrinsically sensitive to oxidants than is an E. coli fumarase. Indeed, when the E. coli enzymes were expressed in B. thetaiotaomicron , they no longer could tolerate aeration; conversely, the B. thetaiotaomicron enzymes maintained full activity when expressed in aerobic E. coli . Thus, the aerobic inactivation of the B. thetaiotaomicron enzymes is a feature of their intracellular environment rather than of the enzymes themselves. B. thetaiotaomicron possesses superoxide dismutase and peroxidases, and it can repair damaged enzymes. However, measurements confirmed that the rate of reactive oxygen species production inside aerated B. thetaiotaomicron is far higher than in E. coli . Analysis of the damaged enzymes recovered from aerated B. thetaiotaomicron suggested that they had been inactivated by superoxide rather than by hydrogen peroxide. Accordingly, overproduction of superoxide dismutase substantially protected the enzymes from aeration. We conclude that when this anaerobe encounters oxygen, its internal superoxide levels rise high enough to inactivate key catabolic and biosynthetic enzymes. Superoxide thus comprises a major element of the oxygen sensitivity of this anaerobe. The extent to which molecular oxygen exerts additional direct effects remains to be determined.
  • 关键词:oxidative stress ; obligate anaerobiosis ; Bacteroides ; reactive oxygen species
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有