期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:13
页码:3422-3427
DOI:10.1073/pnas.1715996115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The influence of population size ( N ) on natural selection acting on alleles that affect fitness has been understood for almost a century. As N declines, genetic drift overwhelms selection and alleles with direct fitness effects are rendered neutral. Often, however, alleles experience so-called indirect selection, meaning they affect not the fitness of an individual but the fitness distribution of its offspring. Some of the best-studied examples of indirect selection include alleles that modify aspects of the genetic system such as recombination and mutation rates. Here, we use analytics, simulations, and experimental populations of Saccharomyces cerevisiae to examine the influence of N on indirect selection acting on alleles that increase the genomic mutation rate (mutators). Mutators experience indirect selection via genomic associations with beneficial and deleterious mutations they generate. We show that, as N declines, indirect selection driven by linked beneficial mutations is overpowered by drift before drift can neutralize the cost of the deleterious load. As a result, mutators transition from being favored by indirect selection in large populations to being disfavored as N declines. This surprising phenomenon of sign inversion in selective effect demonstrates that indirect selection on mutators exhibits a profound and qualitatively distinct dependence on N .