首页    期刊浏览 2024年07月03日 星期三
登录注册

文章基本信息

  • 标题:B7-H1 maintains the polyclonal T cell response by protecting dendritic cells from cytotoxic T lymphocyte destruction
  • 作者:Ling Chen ; Takeshi Azuma ; Weiwei Yu
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2018
  • 卷号:115
  • 期号:12
  • 页码:3126-3131
  • DOI:10.1073/pnas.1722043115
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Induced B7-H1 expression in the tumor microenvironment initiates adaptive resistance, which impairs immune functions and leads to tumor escape from immune destruction. Antibody blockade of the B7-H1/PD-1 interaction overcomes adaptive resistance, leading to regression of advanced human cancers and survival benefits in a significant fraction of patients. In addition to cancer cells, B7-H1 is expressed on dendritic cells (DCs), but its role in DC functions is less understood. DCs can present multiple antigens (Ags) to stimulate dominant or subdominant T cell responses. Here, we show that immunization with multiple tumor Ag-loaded DCs, in the absence of B7-H1, vastly enhances cytotoxic T lymphocyte (CTL) responses to dominant Ag. In sharp contrast, CTL responses to subdominant Ag were paradoxically suppressed, facilitating outgrowth of tumor variants carrying only subdominant Ag. Suppressed CTL responses to subdominant Ag are largely due to the loss of B7-H1–mediated protection of DCs from the lysis of CTL against dominant Ag. Therefore, B7-H1 expression on DCs may help maintain the diversity of CTL responses to multiple tumor Ags. Interestingly, a split immunization approach, which presents dominant and subdominant Ags with different DCs, promoted CTL responses to all Ags and prevented tumor escape in murine tumor models. These findings have implications for the design of future combination cancer immunotherapies.
  • 关键词:B7-H1 ; PD-1 ; dominant antigen ; cytolytic T cells ; subdominant antigen
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有