期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:11
页码:2578-2583
DOI:10.1073/pnas.1708283115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:This article considers replicability of the performance of predictors across studies. We suggest a general approach to investigating this issue, based on ensembles of prediction models trained on different studies. We quantify how the common practice of training on a single study accounts in part for the observed challenges in replicability of prediction performance. We also investigate whether ensembles of predictors trained on multiple studies can be combined, using unique criteria, to design robust ensemble learners trained upfront to incorporate replicability into different contexts and populations.