首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Prospective forecasts of annual dengue hemorrhagic fever incidence in Thailand, 2010–2014
  • 本地全文:下载
  • 作者:Stephen A. Lauer ; Krzysztof Sakrejda ; Evan L. Ray
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2018
  • 卷号:115
  • 期号:10
  • 页码:E2175-E2182
  • DOI:10.1073/pnas.1714457115
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Dengue hemorrhagic fever (DHF), a severe manifestation of dengue viral infection that can cause severe bleeding, organ impairment, and even death, affects between 15,000 and 105,000 people each year in Thailand. While all Thai provinces experience at least one DHF case most years, the distribution of cases shifts regionally from year to year. Accurately forecasting where DHF outbreaks occur before the dengue season could help public health officials prioritize public health activities. We develop statistical models that use biologically plausible covariates, observed by April each year, to forecast the cumulative DHF incidence for the remainder of the year. We perform cross-validation during the training phase (2000–2009) to select the covariates for these models. A parsimonious model based on preseason incidence outperforms the 10-y median for 65% of province-level annual forecasts, reduces the mean absolute error by 19%, and successfully forecasts outbreaks (area under the receiver operating characteristic curve = 0.84) over the testing period (2010–2014). We find that functions of past incidence contribute most strongly to model performance, whereas the importance of environmental covariates varies regionally. This work illustrates that accurate forecasts of dengue risk are possible in a policy-relevant timeframe.
  • 关键词:dengue ; forecasting ; infectious disease ; statistics
国家哲学社会科学文献中心版权所有