期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:15
页码:3942-3947
DOI:10.1073/pnas.1718382115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Metal acquisition is vital to pathogens for successful infection within hosts. Staphylopine (StP), a broad-spectrum metallophore biosynthesized by the major human pathogen, Staphylococcus aureus , plays a central role in transition-metal acquisition and bacterial virulence. The StP-like biosynthesis loci are present in various pathogens, and the proteins responsible for StP/metal transportation have been determined. However, the molecular mechanisms of how StP/metal complexes are recognized and transported remain unknown. We report multiple structures of the extracytoplasmic solute-binding protein CntA from the StP/metal transportation system in apo form and in complex with StP and three different metals. We elucidated a sophisticated metal-bound StP recognition mechanism and determined that StP/metal binding triggers a notable interdomain conformational change in CntA. Furthermore, CRISPR/Cas9-mediated single-base substitution mutations and biochemical analysis highlight the importance of StP/metal recognition for StP/metal acquisition. These discoveries provide critical insights into the study of novel metal-acquisition mechanisms in microbes.