首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Structure of Filled Functions: Why Gaussian and Cauchy Templates Are Most Efficient
  • 本地全文:下载
  • 作者:Vyacheslav Kalashnikov ; Vladik Kreinovich ; José Guadalupe Flores-Muñiz
  • 期刊名称:International Journal of Combinatorial Optimization Problems and Informatics
  • 印刷版ISSN:2007-1558
  • 电子版ISSN:2007-1558
  • 出版年度:2016
  • 卷号:7
  • 期号:3
  • 页码:87-93
  • 语种:English
  • 出版社:International Journal of Combinatorial Optimization Problems and Informatics
  • 其他摘要:One of the main problems of optimization algorithms is that they often end up in a local optimum. It is , therefore , necessary to make sure that the algorithm ge ts out of the local optimum and eventually reaches the global optimum. One of the promising ways guiding one from the local optimum is prompted by the filled function method . It turns out that empirically, the best smoothing functions to use in this method are the Gaussian and Cauchy functions. In this paper, we provide a possible theoretical explanation of this empirical effect.
  • 其他关键词:Optimization Algorithms; Filled Funct ion Method ; Gaussian and Cauchy Functions.
国家哲学社会科学文献中心版权所有