首页    期刊浏览 2024年11月02日 星期六
登录注册

文章基本信息

  • 标题:Indoor Scene Recognition for Micro Aerial Vehicles Navigation using Enhanced-GIST Descriptors
  • 本地全文:下载
  • 作者:B. Anbarasu ; G. Anitha
  • 期刊名称:Defence Science Journal
  • 印刷版ISSN:0976-464X
  • 出版年度:2018
  • 卷号:68
  • 期号:2
  • 页码:129-137
  • 语种:English
  • 出版社:Defence Scientific Information & Documentation Centre
  • 摘要:An indoor scene recognition algorithm combining histogram of horizontal and vertical directional morphological gradient features and GIST features is proposed in this paper. New visual descriptor is called enhanced-GIST. Three different classifiers, k-nearest neighbour classifier, Naïve Bayes classifier and support vector machine, are employed for the classification of indoor scenes into corridor, staircase or room. The evaluation was performed on two indoor scene datasets. The scene recognition algorithm consists of training phase and a testing phase. In the training phase, GIST, CENTRIST, LBP, HODMG and enhanced-GIST feature vectors are extracted for all the training images in the datasets and classifiers are trained for these image feature vectors and image labels (corridor-1, staircase-2 and room-3). In the test phase, GIST, CENTRIST, LBP, HODMG and enhanced-GIST feature vectors are extracted for each unknown test image sample and classification is performed using a trained scene recognition model. The experimental results show that indoor scene recognition algorithm employing SVM with enhanced GIST descriptors produces very high recognition rates of 97.22 per cent and 99.33 per cent for dataset-1 and dataset-2, compared to kNN and Naïve Bayes classifiers. In addition to its accuracy and robustness, the algorithm is suitable for real-time operations.
  • 其他摘要:An indoor scene recognition algorithm combining histogram of horizontal and vertical directional morphological gradient features and GIST features is proposed in this paper. New visual descriptor is called enhanced-GIST. Three different classifiers, k-nearest neighbour classifier, Naïve Bayes classifier and support vector machine, are employed for the classification of indoor scenes into corridor, staircase or room. The evaluation was performed on two indoor scene datasets. The scene recognition algorithm consists of training phase and a testing phase. In the training phase, GIST, CENTRIST, LBP, HODMG and enhanced-GIST feature vectors are extracted for all the training images in the datasets and classifiers are trained for these image feature vectors and image labels (corridor-1, staircase-2 and room-3). In the test phase, GIST, CENTRIST, LBP, HODMG and enhanced-GIST feature vectors are extracted for each unknown test image sample and classification is performed using a trained scene recognition model. The experimental results show that indoor scene recognition algorithm employing SVM with enhanced GIST descriptors produces very high recognition rates of 97.22 per cent and 99.33 per cent for dataset-1 and dataset-2, compared to kNN and Naïve Bayes classifiers. In addition to its accuracy and robustness, the algorithm is suitable for real-time operations.
  • 其他关键词:Micro aerial vehicle;Indoor navigation;Scene recognition;Support vector machines;Classification algorithms;Video signal processing
国家哲学社会科学文献中心版权所有