出版社:Defence Scientific Information & Documentation Centre
摘要:Military tracked vehicle and crew are modelled together in this paper as integrated man-machine lumped parameter model, by integrating the simplified 5 degrees of freedom (DoF) tracked vehicle model, including seat and 4 DoF human bio-dynamic model, thus resulting in a 9 DoF simplified vehicle-occupant model. Then the natural frequency of major mass segment namely the chassis mass is obtained through simulation study, for a known road input. The value obtained is compared with that of an earlier research work, for validation of said man-machine model. Then focusing our study locally at crew seat location, parameters of crew seat suspension for ride comfort are optimised using the optimal digital state space controller designed for this purpose by implementing it in a 2 DoF occupant - seat suspension model and its Simulink model constructed. Simulation results illustrate the attainment of the goal by meeting the controller design requirements.
其他摘要:Military tracked vehicle and crew are modelled together in this paper as integrated man-machine lumped parameter model, by integrating the simplified 5 degrees of freedom (DoF) tracked vehicle model, including seat and 4 DoF human bio-dynamic model, thus resulting in a 9 DoF simplified vehicle-occupant model. Then the natural frequency of major mass segment namely the chassis mass is obtained through simulation study, for a known road input. The value obtained is compared with that of an earlier research work, for validation of said man-machine model. Then focusing our study locally at crew seat location, parameters of crew seat suspension for ride comfort are optimised using the optimal digital state space controller designed for this purpose by implementing it in a 2 DoF occupant - seat suspension model and its Simulink model constructed. Simulation results illustrate the attainment of the goal by meeting the controller design requirements.
其他关键词:Vibration responses;Vehicle-occupant system;Seat suspension system;Simulink model;Digital state space controller