出版社:Defence Scientific Information & Documentation Centre
摘要:The knowledge of transverse sonic injection flow field is very important for the design of scramjet combustor. Three dimensional Reynolds-Averaged Navier Stokes equations alongwith turbulence models are solved to find the effect of transverse sonic slot injection into a supersonic flow. Grid sensitivity of the results is studied for various structured grids. Simulations with different turbulence models (i.e., k-ε, k-ω, SST-kω, and RNG-kε) reveals that RNG-kε turbulence model better predicts the flow features. Computational fluid dynamics predicted wall pressure distribution for various injection pressures matches well with experimental data. The extent of upstream separated region increases with the increase of the injection pressure. The increase of slot width makes the interaction between transverse jet and free stream more intense and causes more spreading and penetration of injectant in the downstream region.
其他摘要:The knowledge of transverse sonic injection flow field is very important for the design of scramjet combustor. Three dimensional Reynolds-Averaged Navier Stokes equations alongwith turbulence models are solved to find the effect of transverse sonic slot injection into a supersonic flow. Grid sensitivity of the results is studied for various structured grids. Simulations with different turbulence models (i.e., k-ε, k-ω, SST-kω, and RNG-kε) reveals that RNG-kε turbulence model better predicts the flow features. Computational fluid dynamics predicted wall pressure distribution for various injection pressures matches well with experimental data. The extent of upstream separated region increases with the increase of the injection pressure. The increase of slot width makes the interaction between transverse jet and free stream more intense and causes more spreading and penetration of injectant in the downstream region.