首页    期刊浏览 2025年03月11日 星期二
登录注册

文章基本信息

  • 标题:Parameter estimation for stable distributions with application to commodity futures log-returns
  • 作者:M. Kateregga ; S. Mataramvura ; D. Taylor
  • 期刊名称:Cogent Economics & Finance
  • 电子版ISSN:2332-2039
  • 出版年度:2017
  • 卷号:5
  • 期号:1
  • DOI:10.1080/23322039.2017.1318813
  • 出版社:Taylor and Francis Ltd
  • 摘要:This paper explores the theory behind the rich and robust family of -stable distributions to estimate parameters from financial asset log-returns data. We discuss four-parameter estimation methods including the quantiles, logarithmic moments method, maximum likelihood (ML), and the empirical characteristics function (ECF) method. The contribution of the paper is two-fold: first, we discuss the above parametric approaches and investigate their performance through error analysis. Moreover, we argue that the ECF performs better than the ML over a wide range of shape parameter values, including values closest to 0 and 2 and that the ECF has a better convergence rate than the ML. Secondly, we compare the t location-scale distribution to the general stable distribution and show that the former fails to capture skewness which might exist in the data. This is observed through applying the ECF to commodity futures log-returns data to obtain the skewness parameter.
  • 关键词:stable distribution;parameter estimation;density estimation; 62G05 ;62G07 ;62G32
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有