首页    期刊浏览 2024年11月09日 星期六
登录注册

文章基本信息

  • 标题:Multivariate text mining for process improvement using cross-canonical correlation analysis
  • 本地全文:下载
  • 作者:Jose Luis Guerrero Cusumano
  • 期刊名称:The Online Journal of Applied Knowledge Management
  • 印刷版ISSN:2325-4688
  • 出版年度:2017
  • 卷号:5
  • 期号:2
  • 页码:45-60
  • 出版社:The International Institute for Applied Knowledge Management
  • 摘要:Text analysis is a useful tool to determine what a company and its customers want in order toimprove processes and methodologies of analysis. Searches in databases may have a time seriescomponent that determines the importance and sequences of multivariate searches and itsstructure. This paper presents a methodology to simplify and model multivariate searches in timeusing the Canonical Correlation approach. The techniques shown provide a robust methodologyto simplify the analysis and create predictive models taking into account temporal dependencies.
  • 关键词:Text analysis; Google correlate; multivariate time series; cross correlation; canonical;correlation; Radic matrices and determinant; predictive modelling.
国家哲学社会科学文献中心版权所有