首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Comparative Performance of Several RecentSupervised Learning Algorithms
  • 本地全文:下载
  • 作者:Tony Bazzi ; Rana Ismail ; Mohamed Zohdy
  • 期刊名称:International Journal of Computer and Information Technology
  • 印刷版ISSN:2279-0764
  • 出版年度:2018
  • 卷号:7
  • 期号:2
  • 页码:49
  • 出版社:International Journal of Computer and Information Technology
  • 摘要:A wide variety of optimization algorithms havebeen developed, however their performance is still unclearacross optimization landscapes. The manuscript presentedherein discusses methods for modeling and training neuralnetworks on a small dataset. The algorithms includeconventional gradient descent, Levenberg-Marquardt,Momentum, Nesterov Momentum, ADAgrad, andRMSprop learning methodologies. The work aims tocompare the performance, efficiency, and accuracy of thedifferent algorithms utilizing the fertility dataset availablethrough the UC Irvine machine learning repository.
  • 关键词:Neural Networks; Back Propagation; LebenbergMarquardt;Momentum; Nesterov; ADAgrad; RMSprop;Hyperparameters; Newton Method; Supervised Learning; gradient;descent; delta rule; Python; Fertility
国家哲学社会科学文献中心版权所有