首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Novel metrics for growth model selection
  • 本地全文:下载
  • 作者:Matthew R. Grigsby ; Junrui Di ; Andrew Leroux
  • 期刊名称:Emerging Themes in Epidemiology
  • 印刷版ISSN:1742-7622
  • 电子版ISSN:1742-7622
  • 出版年度:2018
  • 卷号:15
  • 期号:1
  • 页码:4
  • DOI:10.1186/s12982-018-0072-z
  • 语种:English
  • 出版社:BioMed Central
  • 摘要:Literature surrounding the statistical modeling of childhood growth data involves a diverse set of potential models from which investigators can choose. However, the lack of a comprehensive framework for comparing non-nested models leads to difficulty in assessing model performance. This paper proposes a framework for comparing non-nested growth models using novel metrics of predictive accuracy based on modifications of the mean squared error criteria. Three metrics were created: normalized, age-adjusted, and weighted mean squared error (MSE). Predictive performance metrics were used to compare linear mixed effects models and functional regression models. Prediction accuracy was assessed by partitioning the observed data into training and test datasets. This partitioning was constructed to assess prediction accuracy for backward (i.e., early growth), forward (i.e., late growth), in-range, and on new-individuals. Analyses were done with height measurements from 215 Peruvian children with data spanning from near birth to 2 years of age. Functional models outperformed linear mixed effects models in all scenarios tested. In particular, prediction errors for functional concurrent regression (FCR) and functional principal component analysis models were approximately 6% lower when compared to linear mixed effects models. When we weighted subject-specific MSEs according to subject-specific growth rates during infancy, we found that FCR was the best performer in all scenarios. With this novel approach, we can quantitatively compare non-nested models and weight subgroups of interest to select the best performing growth model for a particular application or problem at hand.
国家哲学社会科学文献中心版权所有