首页    期刊浏览 2025年06月14日 星期六
登录注册

文章基本信息

  • 标题:設計変数の適応的離散化を用いた実数値GAの効率的探索法
  • 本地全文:下载
  • 作者:近藤 俊樹 ; 立川 智章
  • 期刊名称:進化計算学会論文誌
  • 电子版ISSN:2185-7385
  • 出版年度:2017
  • 卷号:8
  • 期号:3
  • 页码:88-99
  • DOI:10.11394/tjpnsec.8.88
  • 语种:Japanese
  • 出版社:The Japanese Society for Evolutionary Computation
  • 摘要:

    In this paper, we propose a new adaptive discretization method of design variables on real-coded genetic algorithms(RCGAs) for improving convergence performance while maintaining diversity.The convergence can be accelerated by setting the appropriate number of discrete classes in RCGAs. However, it is difficult to decide it in advance in most of the practical optimization problems.In addition, the diversity may be lost if the number of discrete classes is too small.In order to overcome these difficulties, we use a simple index which is based on the standard deviation to adaptively determine the number of discrete classes in each design variable.Since the proposed method merely rounds the value of the design variable after applying genetic operators such as crossover and mutation, it can be applied to various RCGAs.Here, we use NSGA-II as an RCGA and investigate the performance efficiency of convergence and diversity by using nineteen benchmark problems, including engineering problems.The convergence and diversity performance are evaluated using GD and IGD, respectively.The results of the numerical experiments show that the proposed method can obtain good convergence while maintaining diversity.

  • 关键词:multiobjective optimization;real-coded genetic algorithms;discretization
国家哲学社会科学文献中心版权所有