首页    期刊浏览 2025年07月01日 星期二
登录注册

文章基本信息

  • 标题:追加データを用いない未来の分類器学習法
  • 本地全文:下载
  • 作者:熊谷 充敏 ; 岩田 具治
  • 期刊名称:人工知能学会論文誌
  • 印刷版ISSN:1346-0714
  • 电子版ISSN:1346-8030
  • 出版年度:2018
  • 卷号:33
  • 期号:2
  • 页码:D-H92_1-9
  • DOI:10.1527/tjsai.D-H92
  • 语种:Japanese
  • 出版社:The Japanese Society for Artificial Intelligence
  • 摘要:

    We propose probabilistic models for predicting future classifiers given labeled data with timestamps collected until the current time. In some applications, the decision boundary changes over time. For example, in activity recognition using sensor data, the decision boundary can vary since user activity patterns dynamically change. Existing methods require additional labeled and/or unlabeled data to learn a time-evolving decision boundary. However, collecting these data can be expensive or impossible. By incorporating time-series models to capture the dynamics of a decision boundary, the proposed model can predict future classifiers without additional data. We developed two learning algorithms for the proposed model on the basis of variational Bayesian inference. The effectiveness of the proposed method is demonstrated with experiments using synthetic and real-world data sets.

  • 关键词:machine learning;classification;concept drift;time-series
国家哲学社会科学文献中心版权所有