期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:20
页码:5072-5076
DOI:10.1073/pnas.1721756115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:We present mass-correlated rotational alignment spectroscopy, based on the optical excitation of a coherent rotational quantum wave and the observation of temporal wave interferences in a mass spectrometer. Combined electronic and opto-mechanical delays increased the observation time and energy resolution by an order of magnitude compared with preceding time-domain measurements. Rotational transition frequencies were referenced to an external clock for accurate absolute frequency measurements. Rotational Raman spectra for six naturally occurring carbon disulfide isotopologues were resolved with 3 MHz resolution over a spectral range of 500 GHz. Rotational constants were determined with single-kilohertz accuracy, competitive with state-of-the-art frequency domain measurements.