期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:20
页码:5163-5168
DOI:10.1073/pnas.1721181115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Understanding the function of high-density lipoprotein (HDL) requires detailed knowledge of the structure of its primary protein, apolipoprotein A-I (APOA1). However, APOA1 flexibility and HDL heterogeneity have confounded decades of efforts to determine high-resolution structures and consistent models. Here, molecular dynamics simulations totaling 30 μs on two nascent HDLs, each with 2 APOA1 and either 160 phospholipids and 24 cholesterols or 200 phospholipids and 20 cholesterols, show that residues 1–21 of the N-terminal domains of APOA1 interact via strong salt bridges. Residues 26–43 of one APOA1 in the smaller particle form a hinge on the disc edge, which displaces the C-terminal domain of the other APOA1 to the phospholipid surface. The proposed structures are supported by chemical cross-linking, Rosetta modeling of the N-terminal domain, and analysis of the lipid-free ∆185APOA1 crystal structure. These structures provide a framework for understanding HDL maturation and revise all previous models of nascent HDL.