期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:17
页码:4334-4339
DOI:10.1073/pnas.1720742115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Cholesteric liquid crystal (CLC) droplets exhibit nontrivial topological features, which are controlled by the ratio between the cholesteric pitch and the droplet radius. The radial spherical structure (RSS) is of particular interest, as it reveals an onion-like concentric organization of the cholesteric helices, leading to the expression of spherical Bragg microcavities. Using an overcrowded alkene-based unidirectional molecular motor as a dopant, we show that the topological defect structure in the droplet can be activated by illumination. By using appropriate molecular motor concentrations, light can either break the symmetry of topological defects (as observed for the bent-twisted bipolar structure), or it can induce inversion of handedness in an onion-like organization (in the case of RSS). This latter feature may pave the way toward alternative activation modes of lasers based on cholesteric droplets. By also studying CLC droplets once they have reached full photoconversion at photostationary state (PSS), we highlight that the strong influence of confinement on the droplets structure occurs to the same extent after the helix inversion event. Our results are interpreted in terms of numerical simulations of the droplets’ structure, which shed light on the major role played by curvature close to the droplets’ center, this latter one becoming dominant when the droplet radius is small.