首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:PARP-1 protects against colorectal tumor induction, but promotes inflammation-driven colorectal tumor progression
  • 作者:Bastian Dörsam ; Nina Seiwert ; Sebastian Foersch
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2018
  • 卷号:115
  • 期号:17
  • 页码:E4061-E4070
  • DOI:10.1073/pnas.1712345115
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Colorectal cancer (CRC) is one of the most common tumor entities, which is causally linked to DNA repair defects and inflammatory bowel disease (IBD). Here, we studied the role of the DNA repair protein poly(ADP-ribose) polymerase-1 (PARP-1) in CRC. Tissue microarray analysis revealed PARP-1 overexpression in human CRC, correlating with disease progression. To elucidate its function in CRC, PARP-1 deficient (PARP-1−/−) and wild-type animals (WT) were subjected to azoxymethane (AOM)/ dextran sodium sulfate (DSS)-induced colorectal carcinogenesis. Miniendoscopy showed significantly more tumors in WT than in PARP-1−/− mice. Although the lack of PARP-1 moderately increased DNA damage, both genotypes exhibited comparable levels of AOM-induced autophagy and cell death. Interestingly, miniendoscopy revealed a higher AOM/DSS-triggered intestinal inflammation in WT animals, which was associated with increased levels of innate immune cells and proinflammatory cytokines. Tumors in WT animals were more aggressive, showing higher levels of STAT3 activation and cyclin D1 up-regulation. PARP-1−/− animals were then crossed with O 6-methylguanine-DNA methyltransferase (MGMT)-deficient animals hypersensitive to AOM. Intriguingly, PARP-1−/−/MGMT−/− double knockout (DKO) mice developed more, but much smaller tumors than MGMT−/− animals. In contrast to MGMT-deficient mice, DKO animals showed strongly reduced AOM-dependent colonic cell death despite similar O 6-methylguanine levels. Studies with PARP-1−/− cells provided evidence for increased alkylation-induced DNA strand break formation when MGMT was inhibited, suggesting a role of PARP-1 in the response to O 6-methylguanine adducts. Our findings reveal PARP-1 as a double-edged sword in colorectal carcinogenesis, which suppresses tumor initiation following DNA alkylation in a MGMT-dependent manner, but promotes inflammation-driven tumor progression.
  • 关键词:DNA repair ; PARP-1 ; colorectal carcinogenesis ; mouse models ; intestinal inflammation
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有