期刊名称:IOP Conference Series: Earth and Environmental Science
印刷版ISSN:1755-1307
电子版ISSN:1755-1315
出版年度:2018
卷号:153
期号:6
页码:062001
DOI:10.1088/1755-1315/153/6/062001
语种:English
出版社:IOP Publishing
摘要:In this study, a new coupling process system of BFB (biological filter bed) and SFCW (subsurface-flow constructed wetland) based on the auto-ventilation network was proposed, and the comparative pollutant removal efficiency of the pilot test coupling system with different substrates configurations were investigated. The study found that: the influent concentration of the system fluctuated greatly and effluent concentration of the comparison system (b) was 20.22 ± 13.37 mg/L, 2.70 ± 2.49 mg/L, 4.40 ± 3.05 mg/L and 1.09 ± 0.62 mg/L, respectively. The comparison system (b) had better removal rates than that of the original system (a), which was 81.30 %, 90.28 %, 88.57 % and 75.36 % for CODcr, NH4+-N, TN and TP, respectively. The removal of the above main water indexes of the comparison system (b) promoted to 4.20 %, 9.20 %, 7.66 % and 13.61 % respectively when compared to the original system (a), which showed that the optimized configuration of various kinds of substrates was significant and was more beneficial to the degradation and removal of pollutants. The adsorption and interception function of substrates in the constructed wetland was the main way of phosphorus removal. The function of auto-ventilation ensured the amount of DO in the coupling system, making the phosphorus removal was less affected comparing to structure of traditional wetland.