首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Unsupervised Spectral Rare Class Ranking for Fraud Detection
  • 本地全文:下载
  • 作者:P.Rajeshwari ; D.Maheshwari
  • 期刊名称:International Journal of Innovative Research in Computer and Communication Engineering
  • 印刷版ISSN:2320-9798
  • 电子版ISSN:2320-9801
  • 出版年度:2017
  • 卷号:5
  • 期号:1
  • 页码:89
  • DOI:10.15680/IJIRCCE.2017.0501012
  • 出版社:S&S Publications
  • 摘要:A many data mining problems, obtaining labels is costly and time consuming, if not practicallyinfeasible. Here implementing new unsupervised spectral ranking method for anomaly, the proposed SRA can generateanomaly ranking either with respect to the majority class or with respect to two main patterns. The spectraloptimization in Spectral Ranking method for Anomaly (SRA) can be viewed as a relaxation of an unsupervised SupportVector Machine problem. In this research work concentrate on developing the rare class kernel model, the optimizationalgorithm, and extensive computational comparisons between AUC-based and error rate based rare class nonlinearkernel learning, as well as computational efficiency improvement of RankRC over RankSVM.
  • 关键词:Spectral Ranking method for Anomaly; Support Vector Machine RankSVM; RankRC; nonlinear kernel;learning.
国家哲学社会科学文献中心版权所有