首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Discover User Rare STPs In Browsed Document Streams.
  • 本地全文:下载
  • 作者:Jaseela Jasmin TK ; Ambili K
  • 期刊名称:International Journal of Innovative Research in Computer and Communication Engineering
  • 印刷版ISSN:2320-9798
  • 电子版ISSN:2320-9801
  • 出版年度:2017
  • 卷号:5
  • 期号:4
  • 页码:7030
  • DOI:10.15680/IJIRCCE.2017.0504068
  • 出版社:S&S Publications
  • 摘要:Distribution of textual documents on the internet is ever changing in various forms. Instead of miningcharacteristics of users from published document streams, here we concentrated on browsed document streams. Usersare browsing various textual documents from various sources. To understand their personal interests and behaviours areone of the innovative applications of the User-aware Rare Sequential Topic Patterns (URSTPs). STPs can characterisecomplete browsing behaviours of readers, so compared to statistical methods mining URSTPs better to discover specialinterests and browsing habits of internet users. Hence, it is capable to give effective and efficient context awarerecommendation for them.
  • 关键词:STPs; web data mining; LDA; hash map; Twitter LDA; PLSI
国家哲学社会科学文献中心版权所有