首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:A Review on Various Frequent Itemsets Mining Algorithms
  • 本地全文:下载
  • 作者:Bhavana G ; Jyothi Jeniffer Dias ; Prof Shobha M S
  • 期刊名称:International Journal of Innovative Research in Computer and Communication Engineering
  • 印刷版ISSN:2320-9798
  • 电子版ISSN:2320-9801
  • 出版年度:2017
  • 卷号:5
  • 期号:4
  • 页码:8989
  • DOI:10.15680/IJIRCCE.2017.05040352
  • 出版社:S&S Publications
  • 摘要:Existing parallel mining algorithms for frequent itemsets lack a mechanism that enables automaticparallelization,load balancing, data distribution, and fault tolerance on large clusters. As a solution to this problem, wedesign a parallel frequent itemsets mining algorithm called FiDoop using the MapReduce programming model. Toachieve compressed storage and avoid building conditional pattern bases, FiDoop incorporates the frequent itemsultrametric tree, rather than conventional FP trees. In FiDoop, three MapReduce jobs are implemented to complete themining task. In the crucial third MapReduce job, the mappers independently decompose itemsets, the reducers performcombination operations by constructing small ultrametric trees, and the actual mining of these trees separately. FiDoopon the cluster is sensitive to data distribution and dimensions, because itemsets with different lengths have differentdecomposition and construction costs. To improve FiDoop’s performance, we develop a workload balance metric tomeasure load balance across the cluster’s computing nodes.
  • 关键词:Frequent itemsets; load balance; Frequent Itemset Mining; MapReduce Programming Model.
国家哲学社会科学文献中心版权所有