首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Scene Semantic Recognition Based on Probability Topic Model
  • 本地全文:下载
  • 作者:Jiangfan Feng ; Amin Fu
  • 期刊名称:Information
  • 电子版ISSN:2078-2489
  • 出版年度:2018
  • 卷号:9
  • 期号:4
  • 页码:97
  • DOI:10.3390/info9040097
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:In recent years, scene semantic recognition has become the most exciting and fastest growing research topic. Lots of scene semantic analysis methods thus have been proposed for better scene content interpretation. By using latent Dirichlet allocation (LDA) to deduce the effective topic features, the accuracy of image semantic recognition has been significantly improved. Besides, the method of extracting deep features by layer-by-layer iterative computation using convolutional neural networks (CNNs) has achieved great success in image recognition. The paper proposes a method called DF-LDA, which is a hybrid supervised–unsupervised method combined CNNs with LDA to extract image topics. This method uses CNNs to explore visual features that are more suitable for scene images, and group the features of salient semantics into visual topics through topic models. In contrast to the LDA as a tool for simply extracting image semantics, our approach achieves better performance on three datasets that contain various scene categories.
  • 关键词:scene semantic recognition; convolutional neural networks; DF-LDA scene semantic recognition ; convolutional neural networks ; DF-LDA
国家哲学社会科学文献中心版权所有