首页    期刊浏览 2025年07月23日 星期三
登录注册

文章基本信息

  • 标题:Non-commutative computations: lower bounds and polynomial identity testing
  • 本地全文:下载
  • 作者:Guillaume Lagarde ; Guillaume Malod
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2016
  • 卷号:2016
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:In the setting of non-commutative arithmetic computations, we define a class of circuits that gener- alize algebraic branching programs (ABP). This model is called unambiguous because it captures the polynomials in which all monomials are computed in a similar way (that is, all the parse trees are iso- morphic). We show that unambiguous circuits of polynomial size can compute polynomials that require ABPs of exponential size, and that they are incomparable with skew circuits. Generalizing a result of Nisan [17] on ABPs, we provide an exact characterization of the complexity of any polynomial in our model, and use it to prove exponential lower bounds for explicit polynomials such as the determinant. Finally, we give a deterministic polynomial-time algorithm for polynomial identity testing (PIT) on unambiguous circuits over R and C , thus providing the largest class of circuits so far in a non-commutative setting for which we can derandomize PIT
  • 关键词:arithmetic complexity ; lower bounds ; non-commutative computations ; PIT
国家哲学社会科学文献中心版权所有