首页    期刊浏览 2024年11月05日 星期二
登录注册

文章基本信息

  • 标题:Near-Optimal Lower Bounds on Quantifier Depth and Weisfeiler-Leman Refinement Steps
  • 本地全文:下载
  • 作者:Christoph Berkholz ; Jakob Nordström
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2016
  • 卷号:2016
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:

    We prove near-optimal trade-offs for quantifier depth versus number of variables in first-order logic by exhibiting pairs of n-element structures that can be distinguished by a k-variable first-order sentence but where every such sentence requires quantifier depth at least n^?(k/log k). Our trade-offs also apply to first-order counting logic, and by the known connection to the k-dimensional Weisfeiler--Leman algorithm imply near-optimal lower bounds on the number of refinement iterations.

    A key component in our proof is the hardness condensation technique recently introduced by [Razborov '16] in the context of proof complexity. We apply this method to reduce the domain size of relational structures while maintaining the minimal quantifier depth to distinguish them in finite variable logics

  • 关键词:descriptive complexity ; trade-off
国家哲学社会科学文献中心版权所有