首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Analysis of Partial Discharge Source Using Artificial Neural Network
  • 本地全文:下载
  • 作者:Priyanka M. Kothoke ; Dr. Satyendra Kumar ; Yogesh R. Chaudhari
  • 期刊名称:International Journal of Innovative Research in Science, Engineering and Technology
  • 印刷版ISSN:2347-6710
  • 电子版ISSN:2319-8753
  • 出版年度:2017
  • 卷号:6
  • 期号:6
  • 页码:10906
  • DOI:10.15680/IJIRSET.2017.0606140
  • 出版社:S&S Publications
  • 摘要:Partial Discharge (PD) patterns are an important tool for the diagnosis of High Voltage V (HV)insulation systems. Human experts can discover possible insulation defects in various representations of the PD data.One of the most widely used representations is phase-resolved PD (PRPD) patterns. In order to ensure reliable operationof HV equipment, it is vital to relate the observable statistical characteristics of PDs to the properties of the defect andultimately to determine the type of the defect. In this work, we have detected PD source using Artificial Neural Network(ANN) tool in Matlab software.
  • 关键词:Partial Discharge; Artificial Neural Network; Phase- Resolved; Statistical parameters.
国家哲学社会科学文献中心版权所有