首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Big Data Mining from Social Networking Services using Spectral Clustering Algorithm
  • 本地全文:下载
  • 作者:Azizkhan F Pathan ; Dr. Chetana Prakash
  • 期刊名称:International Journal of Innovative Research in Computer and Communication Engineering
  • 印刷版ISSN:2320-9798
  • 电子版ISSN:2320-9801
  • 出版年度:2017
  • 卷号:5
  • 期号:6
  • 页码:11666
  • DOI:10.15680/IJIRCCE.2017.0506117
  • 出版社:S&S Publications
  • 摘要:Big Data concern large-volume, complex, growing data sets with multiple, autonomous sources. Withthe fast development of networking, data storage, and the data collection capacity, Big Data are now rapidly expandingin all science and engineering domains, including physical, biological and biomedical sciences. With Big Datatechnologies, we will hopefully be able to provide most relevant and most accurate social sensing feedback to betterunderstand our society at real time. Those data on the Internet exist in vast scale and grow rapidly, so it is urgentlyrequired in technology to mine high-value information from the mass data. This paper introduces an efficient parallelspectral clustering algorithm. The experimental results show that the proposed parallel spectral clustering algorithm issuitable for applying in mass data mining.
  • 关键词:Big Data; HACE; data-driven model
国家哲学社会科学文献中心版权所有