首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:CANOPY SURFACE RECONSTRUCTION AND TROPICAL FOREST PARAMETERS PREDICTION FROM AIRBORNE LASER SCANNER FOR LARGE FOREST AREA
  • 本地全文:下载
  • 作者:Z. Chen ; Z. Yang ; Y. Chen
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2017
  • 卷号:IV-4/W2
  • 页码:3-6
  • 出版社:Copernicus Publications
  • 摘要:Canopy height model(CHM) and tree mean height are critical forestry parameters that many other parameters such as growth, carbon sequestration, standing timber volume, and biomass can be derived from. LiDAR is a new method used to rapidly estimate these parameters over large areas. The estimation of these parameters has been derived successfully from CHM. However, a number of challenges limit the accurate retrieval of tree height and crowns, especially in tropical forest area. In this study, an improved canopy estimation model is proposed based on dynamic moving window that applied on LiDAR point cloud data. DEM, DSM and CHM of large tropical forest area can be derived from LiDAR data effectively and efficiently.
  • 关键词:Canopy Height Model; CHM; LiDAR; Tree Mean Height
国家哲学社会科学文献中心版权所有