首页    期刊浏览 2025年02月18日 星期二
登录注册

文章基本信息

  • 标题:DETECTING VESSELS CARRYING MIGRANTS USING MACHINE LEARNING
  • 本地全文:下载
  • 作者:A. Sfyridis ; T. Cheng ; M. Vespe
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2017
  • 卷号:IV-4/W2
  • 页码:53-60
  • 出版社:Copernicus Publications
  • 摘要:Political instability, conflicts and inequalities result into significant flows of people worldwide, moving to different countries in search of a better life, safety or to be reunited with their families. Irregular crossings into Europe via sea routes, despite not being new, have recently increased together with the loss of lives of people in the attempt to reach EU shores. This highlights the need to find ways to improve the understanding of what is happening at sea. This paper, intends to expand the knowledge available on practices among smugglers and contribute to early warning and maritime situational awareness. By identifying smuggling techniques and based on anomaly detection methods, behaviours of interest are modelled and one class support vector machines are used to classify unlabelled data and detect potential smuggling vessels. Nine vessels are identified as potentially carrying irregular migrants and refugees. Though, further inspection of the results highlights possible misclassifications caused by data gaps and limited knowledge on smuggling tactics. Accepted classifications are considered subject to further investigation by the authorities.
  • 关键词:Machine Learning; SVM; Anomaly Detection; AIS; GPS; Data Mining; Pattern Recognition
国家哲学社会科学文献中心版权所有