首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:CHAIN-WISE GENERALIZATION OF ROAD NETWORKS USING MODEL SELECTION
  • 作者:D. Bulatov ; G. Häufel ; J. Meidow
  • 期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
  • 印刷版ISSN:2194-9042
  • 电子版ISSN:2194-9050
  • 出版年度:2017
  • 卷号:IV-1/W1
  • 页码:59-66
  • 出版社:Copernicus Publications
  • 摘要:Streets are essential entities of urban terrain and their automatized extraction from airborne sensor data is cumbersome because of a complex interplay of geometric, topological and semantic aspects. Given a binary image, representing the road class, centerlines of road segments are extracted by means of skeletonization. The focus of this paper lies in a well-reasoned representation of these segments by means of geometric primitives, such as straight line segments as well as circle and ellipse arcs. We propose the fusion of raw segments based on similarity criteria; the output of this process are the so-called chains which better match to the intuitive perception of what a street is. Further, we propose a two-step approach for chain-wise generalization. First, the chain is pre-segmented using circlePeucker and finally, model selection is used to decide whether two neighboring segments should be fused to a new geometric entity. Thereby, we consider both variance-covariance analysis of residuals and model complexity. The results on a complex data-set with many traffic roundabouts indicate the benefits of the proposed procedure
  • 关键词:Streets are essential entities of urban terrain and their automatized extraction from airborne sensor data is cumbersome because of a complex interplay of geometric; topological and semantic aspects. Given a binary image; representing the road class; centerlines of road segments are extracted by means of skeletonization. The focus of this paper lies in a well-reasoned representation of these segments by means of geometric primitives; such as straight line segments as well as circle and ellipse arcs. We propose the fusion of raw segments based on similarity criteria; the output of this process are the so-called chains which better match to the intuitive perception of what a street is. Further; we propose a two-step approach for chain-wise generalization. First; the chain is pre-segmented using circlePeucker and finally; model selection is used to decide whether two neighboring segments should be fused to a new geometric entity. Thereby; we consider both variance-covariance analysis of residuals and model complexity. The results on a complex data-set with many traffic roundabouts indicate the benefits of the proposed procedure
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有