期刊名称:ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
印刷版ISSN:2194-9042
电子版ISSN:2194-9050
出版年度:2016
卷号:III-4
页码:111-118
出版社:Copernicus Publications
摘要:Within recent years, several new approaches and solutions for Big Data processing have been developed. The Geospatial world is still facing the lack of well-established distributed processing solutions tailored to the amount and heterogeneity of geodata, especially when fast data processing is a must. The goal of such systems is to improve processing time by distributing data transparently across processing (and/or storage) nodes. These types of methodology are based on the concept of divide and conquer. Nevertheless, in the context of geospatial processing, most of the distributed computing frameworks have important limitations regarding both data distribution and data partitioning methods. Moreover, flexibility and expendability for handling various data types (often in binary formats) are also strongly required.
关键词:Distributed computing; GIS processing; raster data tiling; data assimilation; remote sensing data analysis; geospatial big data; spatial big data