摘要:Dielectric elastomer (DE) is able to produce large electromechanical deformation which is time-dependent due to the viscoelasticity. In the current study, a thermodynamic model is set up to characterize the influence of viscoelasticity on the electromechanical and dynamic response of a viscoelastic DE. The time-dependent dynamic deformation, the hysteresis, and the dynamic stability undergoing viscoelastic dissipative processes are investigated. The results show that the electromechanical stability has strong frequency dependence; the viscoelastic DE can attain a larger stretch in the dynamic response than the quasistatic actuation. Furthermore, with the decreasing frequency of the applied electric load, the viscoelastic DE system will present dynamic stability evolution from an aperiodic motion to the quasiperiodic motion. The DE system may also experience a stability evolution from a single cycle motion to multicycle motion with the increasing relaxation times. The value and variation trend of the amplitude of the stretch are highly dependent on the excitation frequency and the relaxation time.