首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Smart Shift Decision Method Based on Stacked Autoencoders
  • 本地全文:下载
  • 作者:Zengcai Wang ; Yazhou Qi ; Guoxin Zhang
  • 期刊名称:Journal of Control Science and Engineering
  • 印刷版ISSN:1687-5249
  • 电子版ISSN:1687-5257
  • 出版年度:2018
  • 卷号:2018
  • DOI:10.1155/2018/1098753
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Manual calibration and testing on real vehicles are common methods of generating shifting schedules for newly developed vehicles. However, these methods are time-consuming. Shifting gear timing is an important operating parameter that affects shifting time, power loss, fuel efficiency, and driver comfort. The stacked autoencoder (SAE) algorithm, a type of artificial neural network, is used in this study to predict shifting gear timing on the basis of throttle percentage, vehicle velocity, and acceleration. Experiments are conducted to obtain training and testing data. Different neural networks are trained with experimental data on a real vehicle under different road conditions collected using the CANcaseXL device and control AMESim simulation model, which was constructed based on real vehicle parameters. The input number of SAE is determined through a comparison between two and three parameters. The output type of SAE is determined through a comparative experiment on pattern recognition and multifitting. Meanwhile, the network structure of SAE is determined through a comparative experiment on simple and deep-learning neural networks. Experimental results demonstrate that using the SAE intelligent shift control strategy to determine shift timing not only is feasible and accurate but also saves time and development costs.
国家哲学社会科学文献中心版权所有