出版社:National Nutrition and Food Technology Research Institute
其他摘要:The use of bacteriocins, mainly nisin, is one of the most significant preservation technologies in the food industry. Nisin encapsulation can improve stability and homogenous distribution in food matrices. In this study, liposomes of four various lipids (lipoid S 100, lipoid S PC-3, lipoid S PC, and lipoid PC (DPPC)) were prepared by dehydration-rehydration method, and compared for entrapment efficiency, and lipid with the highest entrapment efficiency (DPPC) was characterized. The inhibitory effects of encapsulated (DPPC nanoliposomes) and free nisin on the spoilage of pasteurized milk were also studied. All experiments were performed in triplicate. Entrapment efficiency ranged from 14% (lipoid S 100) to 49% (DPPC). DPPC nanoliposomes were large unilamellar vesicles (LUV), and had an asymmetric oval shape (elliptical) with a mean diameter of 136 nm. It was revealed that pasteurized milk spoilage was delayed by both free and encapsulated nisin, but free nisin (with 38 days) was significantly more efficient in comparison with encapsulated nisin (14 days).