首页    期刊浏览 2025年02月27日 星期四
登录注册

文章基本信息

  • 标题:Forecasting Inflation Uncertainty in the G7 Countries
  • 本地全文:下载
  • 作者:Segnon, Mawuli ; Bekiros, Stelios ; Wilfling, Bernd
  • 期刊名称:Econometrics
  • 印刷版ISSN:2225-1146
  • 出版年度:2018
  • 卷号:6
  • 期号:2
  • 页码:1-25
  • 出版社:MDPI, Open Access Journal
  • 摘要:There is substantial evidence that inflation rates are characterized by long memory and nonlinearities. In this paper, we introduce a long-memory Smooth Transition AutoRegressive Fractionally Integrated Moving Average-Markov Switching Multifractal specification [ STARFIMA ( p , d , q ) - MSM ( k ) ] for modeling and forecasting inflation uncertainty. We first provide the statistical properties of the process and investigate the finite sample properties of the maximum likelihood estimators through simulation. Second, we evaluate the out-of-sample forecast performance of the model in forecasting inflation uncertainty in the G7 countries. Our empirical analysis demonstrates the superiority of the new model over the alternative STARFIMA ( p , d , q ) - GARCH -type models in forecasting inflation uncertainty.
  • 关键词:inflation uncertainty; smooth transition; multifractal processes; GARCH processes
国家哲学社会科学文献中心版权所有