首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Assessing Multiple Pathways for Achieving China’s National Emissions Reduction Target
  • 本地全文:下载
  • 作者:Wang, Mingyue ; Liu, Yu ; Liu, Yawen
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2018
  • 卷号:10
  • 期号:7
  • 页码:1-16
  • 出版社:MDPI, Open Access Journal
  • 摘要:In order to achieve China’s target of carbon intensity emissions reduction in 2030, there is a need to identify a scientific pathway and feasible strategies. In this study, we used stochastic frontier analysis method of energy efficiency, incorporating energy structure, economic structure, human capital, capital stock and potential energy efficiency to identify an efficient pathway for achieving emissions reduction target. We set up 96 scenarios including single factor scenarios and multi-factors combination scenarios for the simulation. The effects of each scenario on achieving the carbon intensity reduction target are then evaluated. It is found that: (1) Potential energy efficiency has the greatest contribution to the carbon intensity emissions reduction target; (2) they are unlikely to reach the 2030 carbon intensity reduction target of 60% by only optimizing a single factor; (3) in order to achieve the 2030 target, several aspects have to be adjusted: the fossil fuel ratio must be lower than 80%, and its average growth rate must be decreased by 2.2%; the service sector ratio in GDP must be higher than 58.3%, while the growth rate of non-service sectors must be lowered by 2.4%; and both human capital and capital stock must achieve and maintain a stable growth rate and a 1% increase annually in energy efficiency. Finally, the specific recommendations of this research were discussed, including constantly improved energy efficiency; the upgrading of China’s industrial structure must be accelerated; emissions reduction must be done at the root of energy sources; multi-level input mechanisms in overall levels of education and training to cultivate the human capital stock must be established; investment in emerging equipment and accelerate the closure of backward production capacity to accumulate capital stock.
  • 关键词:carbon intensity reduction target; pathways design for emissions reduction; emissions reduction assessment; stochastic frontier analysis
国家哲学社会科学文献中心版权所有