首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Wide Strip Backfill Mining for Surface Subsidence Control and Its Application in Critical Mining Conditions of a Coal Mine
  • 本地全文:下载
  • 作者:Cao, Wenhao ; Wang, Xufeng ; Li, Peng
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2018
  • 卷号:10
  • 期号:3
  • 页码:1-16
  • 出版社:MDPI, Open Access Journal
  • 摘要:Critical mining under buildings, railways, and water bodies (BRW) brings the contradiction between high recovery rate and minor environmental hazards. To lessen this contradiction, an innovative mining method referred to as “wide strip backfill mining” (WSBM) was proposed in this study. A Winkler beam model is applied to the primary key strata (PKS), and the study revealed a surface subsidence control mechanism and designed the technical parameters of the method. The respective numerical simulations suggested the feasibility of the proposed method and the main influencing factors on surface subsidence can be ranked in descending order as wide filling strip width (WFSW), filling ratio, and pillar width. Meanwhile, a drop in the WFSW from 96 m to 72 m brought out the surface subsidence reduction by 44.5%. By using the super-high water content filling material, the proposed method was applied in the Taoyi coal mine under critical mining conditions. The resulting surface subsidence and deformations met the safety requirements for building protection level 1, and the recovery rate reached 75.9%. Moreover, the application of the method achieved significant technical and economic benefits. The research can provide a theoretical and experimental substantiation for critical mining under BRW.
  • 关键词:critical mining; wide strip backfill mining; primary key strata; surface subsidence control; technical parameters; main influencing factors; wide filling strip width
国家哲学社会科学文献中心版权所有