首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:AutoExtend: Combining Word Embeddings with Semantic Resources
  • 本地全文:下载
  • 作者:Sascha Rothe ; Hinrich Schütze
  • 期刊名称:Computational Linguistics
  • 印刷版ISSN:0891-2017
  • 电子版ISSN:1530-9312
  • 出版年度:2017
  • 卷号:43
  • 期号:3
  • 页码:593-617
  • DOI:10.1162/COLI_a_00294
  • 语种:English
  • 出版社:MIT Press
  • 摘要:We present AutoExtend , a system that combines word embeddings with semantic resources by learning embeddings for non-word objects like synsets and entities and learning word embeddings that incorporate the semantic information from the resource. The method is based on encoding and decoding the word embeddings and is flexible in that it can take any word embeddings as input and does not need an additional training corpus. The obtained embeddings live in the same vector space as the input word embeddings. A sparse tensor formalization guarantees efficiency and parallelizability. We use WordNet, GermaNet, and Freebase as semantic resources. AutoExtend achieves state-of-the-art performance on Word-in-Context Similarity and Word Sense Disambiguation tasks.
国家哲学社会科学文献中心版权所有