首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:A cytokine network involving IL-36γ, IL-23, and IL-22 promotes antimicrobial defense and recovery from intestinal barrier damage
  • 作者:Vu L. Ngo ; Hirohito Abo ; Estera Maxim
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2018
  • 卷号:115
  • 期号:22
  • 页码:E5076-E5085
  • DOI:10.1073/pnas.1718902115
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The gut epithelium acts to separate host immune cells from unrestricted interactions with the microbiota and other environmental stimuli. In response to epithelial damage or dysfunction, immune cells are activated to produce interleukin (IL)-22, which is involved in repair and protection of barrier surfaces. However, the specific pathways leading to IL-22 and associated antimicrobial peptide (AMP) production in response to intestinal tissue damage remain incompletely understood. Here, we define a critical IL-36/IL-23/IL-22 cytokine network that is instrumental for AMP production and host defense. Using a murine model of intestinal damage and repair, we show that IL-36γ is a potent inducer of IL-23 both in vitro and in vivo. IL-36γ–induced IL-23 required Notch2-dependent (CD11b+CD103+) dendritic cells (DCs), but not Batf3-dependent (CD11bCD103+) DCs or CSF1R-dependent macrophages. The intracellular signaling cascade linking IL-36 receptor (IL-36R) to IL-23 production by DCs involved MyD88 and the NF-κB subunits c-Rel and p50. Consistent with in vitro observations, IL-36R– and IL-36γ–deficient mice exhibited dramatically reduced IL-23, IL-22, and AMP levels, and consequently failed to recover from acute intestinal damage. Interestingly, impaired recovery of mice deficient in IL-36R or IL-36γ could be rescued by treatment with exogenous IL-23. This recovery was accompanied by a restoration of IL-22 and AMP expression in the colon. Collectively, these data define a cytokine network involving IL-36γ, IL-23, and IL-22 that is activated in response to intestinal barrier damage and involved in providing critical host defense.
  • 关键词:innate immunity ; interleukin ; inflammatory bowel disease ; repair
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有