首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Optimal model for path loss predictions using feed-forward neural networks
  • 本地全文:下载
  • 作者:Segun I. Popoola ; Emmanuel Adetiba ; Aderemi A. Atayero
  • 期刊名称:Cogent Engineering
  • 电子版ISSN:2331-1916
  • 出版年度:2018
  • 卷号:5
  • 期号:1
  • 页码:1444345
  • DOI:10.1080/23311916.2018.1444345
  • 语种:English
  • 出版社:Taylor and Francis Ltd
  • 摘要:Abstract In this paper, an optimal model is developed for path loss predictions using the Feed-Forward Neural Network (FFNN) algorithm. Drive test measurements were carried out in Canaanland Ota, Nigeria and Ilorin, Nigeria to obtain path loss data at varying distances from 11 different 1,800 MHz base station transmitters. Single-layered FFNNs were trained with normalized terrain profile data (longitude, latitude, elevation, altitude, clutter height) and normalized distances to produce the corresponding path loss values based on the Levenberg–Marquardt algorithm. The number of neurons in the hidden layer was varied (1–50) to determine the Artificial Neural Network (ANN) model with the best prediction accuracy. The performance of the ANN models was evaluated based on different metrics: Mean Absolute error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), standard deviation, and regression coefficient (R). Results of the machine learning processes show that the FNN architecture adopting a tangent activation function and 48 hidden neurons produced the least prediction error, with MAE, MSE, RMSE, standard deviation, and R values of 4.21 dB, 30.99 dB, 5.56 dB, 5.56 dB, and 0.89, respectively. Regarding generalization ability, the predictions of the optimal ANN model yielded MAE, MSE, RMSE, standard deviation, and R values of 4.74 dB, 39.38 dB, 6.27 dB, 6.27 dB, and 0.86, respectively, when tested with new data not previously included in the training process. Compared to the Hata, COST 231, ECC-33, and Egli models, the developed ANN model performed better in terms of prediction accuracy and generalization ability.
  • 关键词:path loss ; received signal strength ; scale conjugate gradient ; radio network planning ; Artificial Neural Network
国家哲学社会科学文献中心版权所有