首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Asynchronous data assimilation with the EnKF in presence of additive model error
  • 本地全文:下载
  • 作者:Pavel Sakov ; Marc Bocquet
  • 期刊名称:Tellus A: Dynamic Meteorology and Oceanography
  • 电子版ISSN:1600-0870
  • 出版年度:2018
  • 卷号:70
  • 期号:1
  • 页码:1-8
  • DOI:10.1080/16000870.2017.1414545
  • 摘要:The term ‘asynchronous data assimilation’ (ADA) refers to modifications of sequential data assimilation methods that take into consideration the observation time. In Sakov et al. [Tellus A, 62 , 24–29 (2010)], a simple rule has been formulated for the ADA with the ensemble Kalman filter (EnKF). To assimilate scattered in time observations, one needs to calculate ensemble forecast observations using the forecast ensemble at observation time. Using then these ensemble observations in the EnKF update matches the optimal analysis in the linear perfect model case. In this note, we generalise this rule for the case of additive model error.
  • 关键词:data assimilation ; ensemble Kalman filter ; asynchronous data assimilation ; model error ; additive model error
国家哲学社会科学文献中心版权所有