首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:The Finite Sample Performance of Modified Adaptive Kernel Estimators for Probability Density Function
  • 本地全文:下载
  • 作者:Serpil Cula ; Serdar Demir ; Oniz Toktamis
  • 期刊名称:Journal of Scientific Research and Reports
  • 电子版ISSN:2320-0227
  • 出版年度:2016
  • 卷号:11
  • 期号:5
  • 页码:1-9
  • DOI:10.9734/JSRR/2016/27756
  • 出版社:Sciencedomain International
  • 摘要:It is well-known that the most popular probability density estimator is kernel density estimator in literature. Adaptive kernel density estimators are generally preferred for data with long tailed densities. In this paper, the adaptive kernel estimators for probability density function are studied. A modified adaptive kernel estimator is investigated. For finite sample performance comparisons, the root mean squared errors of the fixed and the adaptive kernel estimations are computed for simulated samples from various density distributions. The simulation results show that the modified adaptive kernel density estimators have better performance than the classical adaptive kernel density estimator.
  • 关键词:Density estimation; kernel estimator; adaptive kernel estimator; variable bandwidth.
国家哲学社会科学文献中心版权所有