首页    期刊浏览 2025年07月12日 星期六
登录注册

文章基本信息

  • 标题:Membrainy: a ‘smart’, unified membrane analysis tool
  • 作者:Matthew Carr ; Cait E MacPhee
  • 期刊名称:Source Code for Biology and Medicine
  • 印刷版ISSN:1751-0473
  • 电子版ISSN:1751-0473
  • 出版年度:2015
  • 卷号:10
  • 期号:1
  • 页码:3
  • DOI:10.1186/s13029-015-0033-7
  • 语种:English
  • 出版社:BioMed Central
  • 摘要:The study of biological membranes using Molecular Dynamics has become an increasingly popular means by which to investigate the interactions of proteins, peptides and potentials with lipid bilayers. These interactions often result in changes to the properties of the lipids which can modify the behaviour of the membrane. Membrainy is a unified membrane analysis tool that contains a broad spectrum of analytical techniques to enable: measurement of acyl chain order parameters; presentation of 2D surface and thickness maps; determination of lateral and axial headgroup orientations; measurement of bilayer and leaflet thickness; analysis of the annular shell surrounding membrane-embedded objects; quantification of gel percentage; time evolution of the transmembrane voltage; area per lipid calculations; and quantification of lipid mixing/demixing entropy. Each analytical component within Membrainy has been tested on a variety of lipid bilayer systems and was found to be either comparable to or an improvement upon existing software. For the analytical techniques that have no direct comparable software, our results were confirmed with experimental data. Membrainy is a user-friendly, intelligent membrane analysis tool that automatically interprets a variety of input formats and force fields, is compatible with both single and double bilayers, and capable of handling asymmetric bilayers and lipid flip-flopping. Membrainy has been designed for ease of use, requiring no installation or configuration and minimal user-input to operate.
  • 关键词:Molecular dynamics ; Membrane analysis ; Order parameters ; Headgroup orientations ; Mixing/Demixing entropy ; Bilayer/Leaflet thickness ; Area per lipid ; Double bilayer ; Asymmetric bilayer ; Lipid flip-flopping
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有